Water is one of our most important natural resources. We drink it, use it for cooking and cleaning, and depend on it in many aspects of our lives. As such, it shouldn’t be surprising that we have a need to measure the amount of water we use. Whether it’s measuring household or office building water consumption, measuring water in open channels coming from natural reservoirs, or measuring water used inside chemical or power plants, water flow measurement is often a necessity. Enter the flowmeter.

There are a number of different flowmeter types that can be used to measure water flow, each of which is based on different measuring principles and presents certain advantages and disadvantages. Which flowmeter is selected for a given job depends on accuracy and reliability requirements, whether the water is dirty or clean, cost, available suppliers, and many other factors.

In the utility sector, turbine and positive displacement flowmeters are the predominant technology types. However, while these two categories have traditionally dominated utility water and wastewater measurements, new-technology meters such as magnetic and ultrasonic are beginning to make inroads (Figure 1).

Turbine

The word “turbine” means “spinning thing.” Turbine flowmeters have a rotating blade that spins in proportion to flow rate. Unlike positive displacement meters, which excel at measuring fluids at low flow rates, turbine meters do especially well at measuring medium to high-speed flows. Turbine meters are also more adaptable to large pipe sizes than positive displacement meters. Unlike positive displacement meters, which excel at measuring very high flow rates, turbine meters can handle almost any type of liquid. Com-pound meters represent an interesting flowmeter type, as they use one form of technology when flow rates are low and another type when they are high. Low flow rates in compound meters are usually handled either by positive displacement or by single-jet or multi-jet turbines. High flow rates are handled by some type of turbine meter, usually either Wolman or axial. A typical use of compound meters is in apartment or office buildings, where flow rates peak during the day or evening, but are very low at night.

Positive Displacement

One of the most popular types of positive displacement meters used today for water applications is the rotating disc meter. Rotating disc meters were invented in 1830 by James and Edward Dakwyne. The Dakwyne’s were granted a patent for a hydraulic pump using this same principle. In the early 1950s, these meters were improved when hard rubber became the material of choice for disc construction. The life of the meter was greatly extended by combining hard rubber on brass. This rubber and brass design was widely used until the late 1950s, when plastics and composites replaced the brass meter body and chamber.

Positive displacement meters capture the fluid to be measured in a small container of known size. They have counters that increment each time the fluid is captured. PD meters do very well in measuring the flow of viscous liquids, like oil, honey, and syrup. They also excel in measuring fluids with low flow rates. Besides being used for custody transfer of commercial and industrial water, PD meters are also used for custody transfer of hydrocarbon-based liquids to and from delivery trucks and air-planes. Regulatory bodies have approved their use for this purpose. In addition, PD meters are widely used to measure water use in private homes and apartments. Their ability to measure low flow rates, along with their accuracy, makes them ideal for this purpose. While new-technology meters such as magnetic and ultrasonic are starting to make inroads in the PD water flow measurement market, positive displacement meters remain a prominent fixture in residential, commercial, and industrial water flow applications.

Magnetic

Magnetic flowmeters are widely used in the water and wastewater industry, where they have many advantages. They can measure flow in small and large pipes alike. Some magnetic flowmeters measure more than 100 inches in diameter. Magmeters are both accurate and reliable. Both inline and insertion models are available. Different liners make them applicable for sanitary applications and enable them to handle almost any type of liquid.

Unlike many other types of meters, magmeters can be used to meter dirty liquids and slurries. This makes them especially useful in the wastewater and pulp and paper industries. While magnetic flowmeters are highly versatile for measuring liquid flow, they have two main limitations. One limitation is that they cannot measure steam or gas flow, and the other is that they cannot measure the flow of nonconductive liquids. This limitation means that magmeters cannot be used for measuring hydrocarbon-based fluids.

Flowmeter Selection for Utility Applications

Application Notes

Turbine: Turbine meters are particularly well suited for measuring medium to high-speed flows.

Positive Displacement: PD meters excel in measuring fluids with low flow rates.

Magnetic: Magnetic flowmeters are widely used and have many advantages in the water and wastewater industry.

Open Channel: Open channel flowmeters are often used to measure flow in water treatment plants.

Ultrasonic: Ultrasonic Doppler meters can measure the flow of dirty water and water containing particles, such as sand or gravel.
Magnetic flowmeters have coils that are mounted on the outside of a pipe. As current is applied to the coils, a magnetic field is generated. As liquids pass through this magnetic field, a voltage is produced that is proportional to flow rate. This voltage is detected by electrodes that are mounted on either side of the pipe. The flowmeter computes flow rate based on the amount of voltage generated, along with other values. While some early magnetic flowmeters used AC current to generate a magnetic field, more modern models use pulsed DC current. The use of pulsed DC current makes it easier to calibrate the meter in zero-flow conditions. However, some pulsed DC meters have a difficult time generating a pulse sufficiently strong to measure the flow of dirty liquids. As a result, magmeters with AC current are still used for some difficult-to-measure dirty liquids.

Open Channel
Open channel flowmeters are designed to measure the flow of water and other liquids in rivers and streams, as well as in channels where flow occurs due to gravity. The flow of liquids in partially filled pipes that are not presurized is also considered open channel flow. Open channel flowmeters are widely used in the water and wastewater industries. They are used to measure flow in water treatment plants, and also to measure water that is traveling from a natural resource, such as a dam or reservoir, to a water treatment facility.

Ultrasonic
Ultrasonic flowmeters come in two flavors: transit time and Doppler. Transit time meters are mainly used with clean fluids, although technology advances have widened their use to include fluids with some impurities. Transit time meters send one ultrasonic signal from a transducer across the pipe to another transducer that receives the signal. They also send a signal from the transducer all the way back to the original transducer. The signal moves faster when it travels against the flow rate and more slowly with the same. Based on the difference between the two transit times, Doppler flowmeters work somewhat like transit time meters, in that they send an ultrasonic signal into the flow stream. However, instead of sending a signal all the way back, the signal is sent at a slower rate and at a smaller frequency, and it is then sensed by another transducer. The Doppler flowmeter determines the velocity of the flow stream based on the frequency difference between the two signals.

Magemter Application
The Iron Bridge Regional Water Reclamation Facility, which is owned and operated by the City of Orlando, bills customers based on the amount of wastewater it processes. One of its customers, the North Authority, feeds wastewater through two force main from a number of upstream points and calculates total monthly input based on the sum of several flowmeter readings. In total, the North Authority — a region comprised of unincorporated portions of Orange and Seminole counties — serves about 150,000 people and inputs about nine to 11 million gallons of wastewater to Iron Bridge per day. Hence, flowmeter accuracy is an important issue, and, to that end, Iron Bridge recently implemented a rather robust metering system.

How Billing Is Determined
Once a month, the North Authority sends a Flow Report to the City of Orlando’s Wastewater Billing Group. This report contains several input subtotals based on readings of 25 different flowmeters. The city compares the sum of the authority’s subtotals with the totalized flow measured for the month by the master meter on the manhole vault. If these totals agree within five percent of each other, there are two master magnetic flowmeters installed in parallel on the two branches of the wastewater input main. The master meters are located underground in a vault, accessible via a trap door. Each sensor connects by cable to its respective transmitter, mounted on the metering station panelboard. Above each transmitter is a circular chart recorder that plots wastewater flow rate on a seven-day chart. This flow continuously.

Only one magmeter is used at a time, with the other serving as a standby. Valves “A” and “B,” also underground in the vault, are installed on the two branch lines, upstream from the meter sensors. Operating manually at the station, one valve shuts off flow to the standby meter while the other opens the line to the active meter. Until a radio telemetry system was installed in April 2003, staff drove to the metering station twice per week, more than two miles from the plant, to obtain totalized flow readings. On one such occasion, the active meter’s seven-day chart was changed. Back at the plant, the totalized flow readings were e-mailed to the North Authority as interim “FYI” reports.

Installation of the telemetry system now provides automatic digital transmission of continuous flow and totalized flow readings every 30 seconds to the Iron Bridge facility. The system is connected to a computer that logs the information and automatically sends it to the panelboard of the North Authority. This not only cut travel time in half but also took over the task of e-mailing the information. What’s more, the readings are truer because they are scheduled at exactly the same time (midnight each day). Both the North Authority and the city benefit from automatically receiving this daily data. It gives everyone a more current picture of flow conditions and provides valuable information regarding any unusual patterns of wastewater input flow.

MagMaster Meters Chosen
For sustainable high accuracy and performance, two 24-inch MagMaster magnetic flowmeters — manufactured by ABB (www.abb.com) — were installed to run as the master meters. Each of the meters can measure wastewater flows up to 84,46 million gallons per day. Daily flow rates from the North Authority vary over a wide range — typically from 900 to 15,000 gallons per minute. A qualified ABB field service engineer is scheduled to visit the site on a yearly basis to check the calibrated accuracy of the master meters. With millions of gallons of wastewater being metered every day, only a few percentage points of error can very rapidly add up to literally thousands of dollars in questionable billings. As such, the ABB field service engineer uses a portable, elec- tronic calibrator, named CalMaster, to verify and re-certify accuracy of the two master meters.

The system, which is designed to function specifically with the MagMaster meter, includes a portable computer that contains the necessary software to carry out a pre-programmed verification procedure. It also features a control box that enables a technician who is a consultant to the City of Orlando, Mr. Mr. Harbison is instrumentation chief for the city’s Environmental Services Wastewater Division. A version of this article originally appeared in the December 2003 issue of WaterWorld.

Telemetry System Specifications
The radio telemetry system installed at the metering station connects directly to the RS232 communications port of each magmeter transmitter and automatically sends out e-mails to the North Authority as interim “FYI” reports. The CalMaster can also serve as a diagnostic tool used for preventive maintenance on the master meters. It stores all previous validation data for each tested meter and, on its computer screen, can plot trend curves of data for selected components. If a curve shows gradual deterioration of the component, the affected meter can be repaired or replaced in-line while the standby meter takes over active measurement.

Information for this article was supplied by Roy A. Pelletier and Andrew J. Harbison. Mr. Pelletier is assistant division manager for the City of Orlando. Mr. Harbison is instrumentation chief for the city’s Environmental Services Wastewater Division.
the way across the pipe. Doppler flowmeters bounce their signals off of particles in the flow stream. As the sig-
nals bounce off the par-
ticles, a frequency shift occurs that is propor-
tional to flow rate. A receiver detects this frequency shift, and
the flowmeter computes flow based

on this difference.

While transit time meters typically
get more attention than Doppler
meters, Doppler meters are of special
importance in the water and waste-
water industry. Like magnetic flowme-
ters, Doppler meters can measure the
flow of dirty water and water contain-
ning particles, such as sand or gravel.
Measuring flow under these conditions
is difficult for many other types of

flowmeters. Most flowmeters perform
best with clean fluids. Even though
Doppler flowmeters do not have the
same accuracy as transit time meters,
they still play an important role in
measuring flow under difficult condi-
tions. Doppler meters are particularly
well suited for flow measurement in
the wastewater industry, which often
requires the measurement of dirty
water high particle counts.

And the Rest...

Other flowmeters used in the
water and wastewater industry
include differential pressure, vortex,
thermal, and Coriolis. While these
types are not as widely used as the
aforementioned meters, they still
have a place in the water and waste-
water market. In examining the
appropriateness of a given flowmeter
type, it is important to keep in mind
that proper selection depends on the
accuracy required, the condition of
the fluid being measured, cost, the
experience of the end-user, and other
factors. As a result, a user must have
a thorough understanding of the spe-
cific requirements of a water applica-
tion before selecting a flowmeter for
the job. This is particularly important
when considering a flowmeter that
isn’t typically used for water and
wastewater applications.

Dr. Jesse Yoder is a
regular contributor to
Flow Control maga-
zine. The president of
Flow Research Inc.,
Dr. Yoder has been a
leading analyst in the
process control industry since 1986.
He has written over 40 market studies
and is currently completing a 12-
volume series of studies on the world-
wide flowmeter market. Included in
this series is The World Market for
Pressure Transmitters, which was
published in January 2004 and covers
all pressure-related technologies on
the market today. Flow Research
offers a quarterly update service called
the Worldflow Monitoring Service.
Dr. Yoder can be reached at jesse@
flowresearch.com or 781 245-3200.